\(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [617]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 150 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \]

[Out]

-2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1
/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/a/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*A*(cos(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^
(1/2)/a/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3034, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 (A b-a B) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[In]

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(A*b - a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)])/(a*d*Sqrt[Cos[c + d*
x]]*Sqrt[a + b*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c
 + d*x]])/(a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {\left (A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{a}-\frac {\left ((A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{a} \\ & = -\frac {\left ((A b-a B) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{a \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{a \sqrt {b+a \cos (c+d x)}} \\ & = -\frac {\left ((A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{a \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (A \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{a \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = -\frac {2 (A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.60 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.73 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {\cos (c+d x)} \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} (A+B \sec (c+d x)) \left (i A (a+b) E\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-i a (A+B) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+A (b+a \cos (c+d x)) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a d (B+A \cos (c+d x)) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \]

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*Sqrt[Cos[c + d*x]]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(A + B*Sec[c + d*x])*(I*A*(a + b)*EllipticE[I*ArcS
inh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - I*a*(A + B)
*EllipticF[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a +
b)] + A*(b + a*Cos[c + d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Tan[(c + d*x)/2]))/(a*d*(B + A*Cos[c + d*x])*Sqrt[Sec[c
+ d*x]]*Sqrt[a + b*Sec[c + d*x]])

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1096\) vs. \(2(196)=392\).

Time = 1.86 (sec) , antiderivative size = 1097, normalized size of antiderivative = 7.31

method result size
default \(\text {Expression too large to display}\) \(1097\)
risch \(\text {Expression too large to display}\) \(1140\)

[In]

int((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(2*B*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a
-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a
-b))^(1/2))*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)/(-((1-cos(d*x
+c))^2*csc(d*x+c)^2-1)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)/(a*(1-
cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/((a-b)/(a+b))^(1/2)+2*A*(-((1-cos(d*x+c))^2*cs
c(d*x+c)^2-1)/((1-cos(d*x+c))^2*csc(d*x+c)^2+1))^(1/2)*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*cs
c(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(((a-b)/(a+b))^(1/2)*a*(1-cos(d*x+c))^3*csc(d*x+c)^3-
((a-b)/(a+b))^(1/2)*b*(1-cos(d*x+c))^3*csc(d*x+c)^3+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(
d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+
csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a-(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a
+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a
+b)/(a-b))^(1/2))*a+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-c
os(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2)
)*b-((a-b)/(a+b))^(1/2)*a*(-cot(d*x+c)+csc(d*x+c))-((a-b)/(a+b))^(1/2)*b*(-cot(d*x+c)+csc(d*x+c)))/a/((a-b)/(a
+b))^(1/2)/(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 371, normalized size of antiderivative = 2.47 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {3 i \, \sqrt {2} A a^{\frac {3}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 i \, \sqrt {2} A a^{\frac {3}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + \sqrt {2} {\left (-3 i \, B a + 2 i \, A b\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (3 i \, B a - 2 i \, A b\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )}{3 \, a^{2} d} \]

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/3*(3*I*sqrt(2)*A*a^(3/2)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPI
nverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)
/a)) - 3*I*sqrt(2)*A*a^(3/2)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrass
PInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*
b)/a)) + sqrt(2)*(-3*I*B*a + 2*I*A*b)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*
b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(3*I*B*a - 2*I*A*b)*sqrt(a)*weierstra
ssPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) +
2*b)/a))/(a^2*d)

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(cos(c + d*x))/sqrt(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x))^(1/2), x)